A Level Prior Knowledge โ Index Laws and Indices A Level Prior Knowledge โ Index Laws and Indices This multiple choice quiz will test the prior knowledge needed to move on to A Level Indices and Index Laws content. Choose an expression equivalent to: \[\sqrt{x}\] \[x^{-\frac{1}{2}}\] \[x^{\frac{1}{2}}\] \[x^{\frac{1}{x}}\] \[x^{-\frac{1}{x}}\] Which of these is equivalent to: \[\frac{1}{x^3}\] \[x^{-3}\] \[x^{\frac{1}{3}}\] \[x^3\] \[x^{-\frac{1}{3}}\] Simplify: \[a^5 \times a^4\] \[a\] \[a^{20}\] \[a^{-1}\] \[a^9\] Simplify: \[(a^5)^4\] \[a\] \[a^{20}\] \[a^{-1}\] \[a^9\] Simplify: \[\frac{a^5}{a^4}\] \[a\] \[a^{20}\] \[a^{-1}\] \[a^9\] Expand: \[3x(2x^2-3x^5)\] \[6x^2-9x^5\] \[5x^3-6x^6\] \[6x^3-9x^6\] \[5x^2-6x^5\] Factorise fully: \[4x^3y-2xy^2\] \[2xy(2x^2-y)\] \[xy(4x-2)\] \[2xy(4x-1)\] \[2x^2y(4x-2y)\] Simplify: \[2(3a-4b)-4(2a-b)\] \[-2a-12b\] \[14a-12b\] \[-2a-4b\] \[14a-4b\] Simplify: \[\frac{(2a^4)^5\times a^7}{8a^3}\] \[\frac{1}{4}a^{24}\] \[4a^{24}\] \[4a^{15}\] \[\frac{1}{4}a^{15}\] Given that: \[2^{3x+1}=\frac{8^3\times4^3}{2^8}\]Find the value of x. \[x=7\] \[x=-1\] \[x=2\] \[x=-2\] Time is Up! Time's up More?