This guide has everything you need on solving two-step linear equations.

The key principle of solving equations is to perform inverse operations. We need to identify what operations we have in each equation, then undo them by performing the inverse. We aim to have the **variable** (letter) left on one side of the equation and a **constant** (numerical value) on the other. If you find it tricky to identify operations, it may help to look back at the forming expressions revision guide to make sure you are comfortable with what each operation looks like in algebraic form.

The best method to develop is the **balancing method** as it lets you systematically undo operations in equations of increasing difficulty. It is based on the idea of a balance beam. If a beam is balanced on a pivot, then we can conclude that the total value either side is equal.

Furthermore, if we **add** or **subtract** the same on each side of the pivot, it will remain balanced. If we perform the same proportional changes (**multiplication** or **division**) to all terms then it will also remain balanced.

In summary:

- Any amount of addition or subtraction should be the same on each side of the pivot (โ=โ sign).
- Any multiplication or division should be applied to ALL terms in the equation.

## How to Solve 2-Step Linear Equations

**Example 1**

Solve 2๐ฅ + 3 = 7.

When faced with 2-step equations, as a rule, it is generally best to reverse any additions or subtractions before reversing multiplications or divisions. This will avoid creating unnecessary fractions or decimals in the equation.

The visual aid may help you to appreciate the context of your workings.

2๐ฅ + 3 = 7 | |||

โ 3 | โ 3 | ||

2๐ฅ = 4 | |||

รท 2 | รท 2 | ||

๐ฅ = 2 |

**Example 2**

Solve 3๐ฅ + 5 = 12.

You will often find solutions to equations are not integers. In these cases, it is safest to leave your solutions as a fraction, unless specifically directed otherwise.

3๐ฅ + 5 = 12 | ||

โ 5 | โ 5 | |

3๐ฅ = 7 | ||

รท 3 | รท 3 | |

๐ฅ = |

**Example 3**

Solve 4(๐ฅ + 5) = 32.

When brackets are involved, it is usually easiest to expand them first before trying to balance.

4(๐ฅ + 5) = 32 | ||

expand | expand | |

4๐ฅ + 20 = 32 | ||

โ 20 | โ 20 | |

4๐ฅ = 12 | ||

รท 4 | รท 4 | |

๐ฅ = 3 |

## Testing Your Knowledge

**Example 1**

Solve 2๐ฅ + 3 = 7.

Now that you know what you need to know about solving two-step linear equations, you’re probably ready for more revision. You can find more of our blogs **here**! You can also **subscribe to Beyond** for access to thousands of secondary teaching resources. You can **sign up for a free account here** and take a look around **at our free resources** before you subscribe too.